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Industrial scale electrochemistry

Chlor-Alkali production

CO2 related technologiesPresent Industries

Chlor Alkali production

Batteries
CO2 reduction

Desalination, etc.

Thermoelectrofuels
Water electrolysis

PV, fuel cells Electrofuels

Metal extraction

Plating & Polishing
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Electrochemical governing factors

Faraday’s law Faradaic/current efficiency (selectivity)
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The Chlor Alkali Process
 Three electrochemical processes (numbers from J. Appl. Elect., 2008)

- Mercury (being phased out) – 3.1 to 3.4 MWh/t Cl2
- Diaphragm (asbestos and non-asbestos) – 3.2 to 3.8 MWh/t Cl2p g ( ) 2

- Membrane  - 2.4 to 2.9 MWh/t Cl2

 Long history
- Over 100 years old- Over 100 years old
- Energy reduction innovations occur even today (e.g., Oxygen depolarization cathodes)
- Initial concept of ODC in 1950, but developments continued through 2000’s.
- Large surface area (>2 m2 ) and long life times possible (>3 years)
- But energy reduction must consider other factors
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Technology Advances = Reduce Energy/Increase Efficiency

NAFION® Cation Ion Exchange 
Membrane Employed

Modular – Skid Mounted 
Stacks of Single Cells

Optimized 
Single Cells

Mixed Metal Oxide Based 
Dimensionally Stable Anodes – long 

operating lifeoperating life
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Comparison of Commercial Water Electrolyzers
Water to H2 conversion efficiencies: 80 – 95%
Energy Efficiencies (rectifier, electrolyzer, auxiliaries): 56 – 73%
H2 purity: 99.8 – 99.998%

Further requirements: Lower electric & capital, higher output pressure, larger sizes
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Water electrolyzer capital costs
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Capital costs
 Chlor-alkali plants are capital intensive ($200K/t/d to $1M/t/d)

- Includes auxiliary systems for treating and handling chemicals
- Higher temperature (85 to 90 C) requires heating systemsg p ( ) q g y
- Extremely corrosive (requiring expensive materials)

 Water electrolysis plants to produce hydrogen are less capital intensive depending 
on sizeon size
- Room temperature
- Less corrosive (depending on input electrolyte)

 CO electrolysis plants may be in-between these two cases CO2 electrolysis plants may be in-between these two cases
- We assume similarity to chlor-alkali plants in our analysis
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Pilot Plant of Industrial Scale
Hashimoto et al. (2003)

Hydrogen Production
by Seawater Electrolysis

Methane Production
by the reaction ofby Seawater Electrolysis by the reaction of 

Carbon Dioxide with Hydrogen
4H2O  4H2 + 2O2 CO2 + 4H2  CH4 + 2H2O
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From Hashimoto et al.
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CO2 electrochemical conversion – a very brief history
 Long history of research

- 1970’s – oriented towards local power (U.S. Navy, NASA) - abandoned
- 1980’ and early 90’s – fuel production (GRI funded efforts) - abandonedy p ( )
- 2000’s – CO2 reduction, renewable power usage orientation

 Focused on catalyst development and reaction mechanisms
- Only a few full-cell studies- Only a few full cell studies
- No engineering/economic requirements established

 First engineering/economic study of reactor performance by Oloman and Li (205 –
2008)2008)

 More complete analyses for formic acid and CO by DNV group (2008 – now)

 Other reaction kinetics and scale up studies (e.g., Kenis et al.) p ( g )
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Many electrocatalysts
Group 1 Group 18

1 2

H 1s CO He 1s2

1.0079 Group 2 13 14 15 16 17 4.0026

Group

CO2 Electrocatalysts

H2
3 4 5 6 7 8 9 10

Li 2s1 Be HC B C N O F Ne
6.941 9.012 10.81 12.011 14.0067 15.999 18.998 20.179

11 12 13 14 15 16 17 18

Na Mg Al Si P S Cl ArGroup

H2

HCOOH

22.989 24.305 3 4 5 6 7 8 9 10 11 12 26.982 28.086 30.974 32.06 35.453 39.948

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
39.098 40.08 44.956 47.88 50.942 51.996 54.938 55.847 58.933 58.69 65.39 69.72 72.59 74.922 78.96 79.904 83.8

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
85.468 87.62 88.906 91.224 92.906 95.94 98 101.07 102.906 106.42 107.868 112.41 114.82 118.71 121.75 127.6 126.905 131.29

55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
132.905 137.33 138.906 178.49 180.948 183.85 186.207 190.2 192.22 195.08 196.967 200.59 204.383 207.2 208.98 209 210 222

From: Azuma et al., JES, 137 (6), 1772, (1990)
-2.2V vs. SCE, 0.05M KHCO3, RT
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Thermodynamics of CO2 reduction

Thermodynamically, reduction of 
CO2 should be as feasible as that 
of water

Practically, CO2 reduction is 
governed by:g y

• Low kinetics
• Product economics
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Direct CO2 Electrochemical Reduction – Approximate opex
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Trade-offs in Technology Development
Route Energy

($/ton)
Chemicals

($/ton)
C.D. 

(mA/cm2)
1 Alkaline anolyte 393 500 701 Alkaline anolyte 393 500 70
2 Acidic anolyte 560 3 40
3 Acidic anolyte – higher productivity 
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Profit Margin - CAPEX and OPEX

• Alkaline route requires high current density and FE for profitability
• Acid route requires lower current density and lower stable FE
• Catalyst/Electrode development could increase current to 500 mA/cm2• Catalyst/Electrode development could increase current to 500 mA/cm2
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Technology Development Targets 

y
High Current Density
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Optimal Value Comparison – Acidic and Alkaline Routes
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Multi-Scale Approach

Lab Scale
Novel Cathode &

Sn eletrodeposited
carbon fiber

Macroporous
(>80%) Sn sponge

Novel Cathode & 
Anode catalysts

Reactivity & 
Selectivity

100m20m 100m20m

50~80 mA/cm2, 70% FE, 
decrease with time

60~80 mA/cm2, 40% FE, 
constant over 1day

Bench Scale
Continuous operationContinuous operation

Electrodes, chemistry
Lifetime

Demo Unit
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Value Chain Analysis
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Revenue CO2 quotas

Cash flow & NPV

CAPEX, OPEX, Disposal cost, Decommissioning cost Revenue CO2 quotas

Cash flow & NPV

CAPEX, OPEX, Disposal cost, Decommissioning cost



German Consortia Formed in 2010
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A notional “Integrated CO2 synthesis plant”

Bioreactor

Synthetic FuelSpecialty chemicals

Renewable energy Ancillary services

CO2 Electroreduction
Formate, 

formic acid

Source of CO2 Other uses (e.g.)
• Fuel cells

OxygenWaste water
• Fuel cells
• H2 source
• Deicing salts
• CO source

Fermentation, biogas, 
air capture
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Summary
 Electrochemical reduction of CO2 to formic acid or CO appears to be commercially 

feasible
- Improvements in catalyst stability, current density, and reactor design are necessaryp y y, y, g y

 Synthesis of fuels and fine chemicals from CO2 should be considered as a 
combination of processes much like a refinery or petrochemical complex

M lti l d t ti i i d t i ti d i t f Multi-scale demonstration is a required step in continued improvement of processes
- Chlor-alkali industry is still improving after 100+ years!
- Economic and sustainability analyses are important
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Safeguarding life, property 
d th i tand the environment

www.dnv.com
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